Rahman, Md Maksudur
Dissertation submitted to the Department of Chemistry and the University of Wyoming in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry.
DISSERTATION ABSTRACT:
Nanomaterials are a unique class of materials that exhibit unique chemical and physical properties due to their nanoscale dimensions. These properties make nanomaterials well-suited for use in sensing applications, particularly in the development of electrochemical sensors and biosensors. With a wide range of nanoparticle types available, differing in size, shape, and composition, the applications for nanomaterials in electroanalysis are broad and expanding. In particular, well-ordered nanoparticle arrays are attractive platforms for a variety of analytical applications. However, the fabrication of such arrays is generally challenging due to the difficulty of controlling individual nanoparticle nucleation and growth events. This is where Scanning Electrochemical Cell Microscopy (SECCM) comes in. SECCM is a versatile nanofabrication tool that enables the synthesis of individual nanoparticles of controlled size at precisely defined locations on a sample with high spatial resolution (<100 nm). SECCM allows for the fabrication of ordered nanoparticle arrays where individual nucleation and growth events can be detected and controlled, resulting in nanoparticles of controlled size. One application of this technology is developing electrochemical sensors and biosensors, where gold nanoparticles can be modified with biorecognition elements like thiol compounds to detect specific biomolecules. The ability to fabricate well-ordered nanoparticle arrays with controlled size and position using SECCM makes it an ideal tool for developing such sensing devices, providing a powerful and flexible platform for nanofabrication in electrochemical sensing applications.