Research Thrust 2: Sheet Metal Implants for Trauma Repair

Dr. Kinsey with grad student Liz Mamros
Dr. Brad Kinsey with grad student Liz Mamros. Image: Jeremy Gasowski

Team Leads:

Dr. Brad Kinsey 
UNH Department of Mechanical Engineering
Dr. Ian Baker 
Dartmouth College Thayer School

Currently available metallic bio-implants required for trauma fixation hardware and surgical repair of severely fractured bones have functional and aesthetic limitations, and conflicting requirements of strength, lightweight, and anatomy-appropriate geometry. Current designs fail to meet these requirements, with failure rates over 15% in critical structures such as the jaw. Orthopedic trauma hardware is either machined or cast and thus is energy, time and cost-intensive to produce. Localized forming would allow for a hardened and thinner biomaterial with the required high strength and shape. NH BioMade is developing new approaches to improve the formability and strength of metallic bio-implants while decreasing the weight of the implant, with the prospect of rapid prototyping for patient-specific components.


Increased formability is exhibited by metallic alloys during non-linear deformation by locally controlling the dislocation behavior at the nanoscale, which creates a heterogeneous biomaterial in terms of strength and geometry.

  • Integrated processing-characterization-size sensitive modeling and experimentation 
  • HPC allows the use of 106 elements as opposed to 104 elements achieving product scale simulations
  • Relationships between formability and microscale grain boundary and twin boundary interactions with dislocations 
  • Heterogeneous, metallic biomaterials with complex geometries and superior properties, i.e., lightweight and high strength

Bhowmik, S., Zhang, J., Vogel, S., Nene, S., Mishra, R., McWilliams, B. & Knezevic, M. (2022). “Effects of plasticity-induced martensitic transformation and grain refinement on the evolution of microstructure and mechanical properties of a metastable high entropy alloy”. Journal of Alloys and Compounds, 891, 161871. doi: 10.1016/j.jallcom.2021.161871

Cluff, S., Knezevic, M., Miles, M. P., Fullwood, D. T., Mishra, R. K., Sachdev, A. K., … Homer, E. R. (2021). “Coupling kinetic Monte Carlo and finite element methods to model the strain path sensitivity of the isothermal stress-assisted martensite nucleation in TRIP-assisted steels”. Mechanics of Materials, 154, 103707. doi: 10.1016/j.mechmat.2020.103707.  

Eghtesad, A., Germaschewski, K., & Knezevic, M. (2022). "Coupling of a multi-GPU accelerated elasto-visco-plastic fast Fourier transform constitutive model with the implicit finite element method". Computational Materials Science, 208, 111348. doi:10.1016/j.commatsci.2022.111348

Eghtesad, A., & Knezevic, M. (2021). “A full-field crystal plasticity model including the effects of precipitates: Application to monotonic, load reversal, and low-cycle fatigue behavior of Inconel 718”. Materials Science and Engineering: A, 803, 140478. doi: 10.1016/j.msea.2020.140478.  

Feng, Z., Pokharel, R., Vogel, S. C., Lebensohn, R. A., Pagan, D., Zepeda-Alarcon, E., Clausen, B., Martinez, R., Gray, G. T., & Knezevic, M. (2022). Crystal plasticity modeling of strain-induced martensitic transformations to predict strain rate and temperature sensitive behavior of 304 L steels: Applications to tension, compression, torsion, and impact. International Journal of Plasticity, 156, 103367. doi: 10.1016/j.ijplas.2022.103367

Feng, Z., Mamros, E.Ha, J.Kinsey, B. & Knezevic, M. (2021). “Modeling of plasticity-induced martensitic transformation to achieve hierarchical, heterogeneous, and tailored microstructures in stainless steels”. CIRP Journal of Manufacturing Science and Technology, 33, 389-397. doi: 10.1016/j.cirpj.2021.04.006

Feng, Z., Zecevic, M., & Knezevic, M. (2021). “Stress-assisted (γ→α′) and strain-induced (γ→ε→α′) phase transformation kinetics laws implemented in a crystal plasticity model for predicting strain path sensitive deformation of austenitic steels”. International Journal of Plasticity, 136, 102807. doi: 10.1016/j.ijplas.2020.102807.  

Ferreri, N. C., Pokharel, R., Livescu, V., Brown, D. W., Knezevic, M., Park, J.-S., … Gray, G. T. (2020). “Effects of heat treatment and build orientation on the evolution of ϵ and α′ martensite and strength during compressive loading of additively manufactured 304L stainless steel”. Acta Materialia, 195, 59–70. doi: 10.1016/j.actamat.2020.04.036. 

Ha, J., Mayer, S., Feng, Z., Matukhno, N., Knezevic, M. & Kinsey, B. (2022). “Inducing <111> texture in AA5182-O through continuous-bending-under-tension and recovery heat treatment processes to influence r-values" CIRP Annals. doi: 10.1016/j.cirp.2022.04.059.

Knezevic, M., Ghorbanpour, S., Ferreri, N. C., Riyad, I. A., Kudzal, A. D., Paramore, J. D., … McWilliams, B. A. (2021). “Thermo-hydrogen refinement of microstructure to improve mechanical properties of Ti–6Al–4V fabricated via laser powder bed fusion”. Materials Science and Engineering: A, 809, 140980. doi: 10.1016/j.msea.2021.140980.  

Lee, J., Bong, H. J., & Ha, J. (2022). Efficient and robust stress integration algorithm for anisotropic distortional hardening law under cross-loading with latent hardening. European Journal of Mechanics - A/Solids, 96, 104775. doi: 10.1016/j.euromechsol.2022.104775

Mamros, E., Mayer, S., Banerjee, D., Iadicola, M., Kinsey, B., & Ha, J. (2022). Plastic anisotropy evolution of SS316L and modeling for novel cruciform specimen. International Journal of Mechanical Sciences, 234, 107663. doi: 10.1016/j.ijmecsci.2022.107663

Mamros, E., Eaton, M., Ha, J. & Kinsey, B. (2021). “Numerical Analysis of SS316L Biaxial Cruciform Specimens Under Proportional Loading Paths”.  In:Proceedings of the ASME 2021 16th International Manufacturing Science and Engineering Conference MSEC2021 doi: 10.1115/msec2021-59877

Mamros E.M., Mayer S.M., Ha J., Kinsey B.L. (2021) “Experimental Implementation of SS 316L Cruciform Testing to Achieve Various Deformation Paths”. In: Daehn G., Cao J., Kinsey B., Tekkaya E., Vivek A., Yoshida Y. (eds) Forming the Future. The Minerals, Metals & Materials Series. Springer, Cham. doi: 10.1007/978-3-030-75381-8_166

Mamros E.M., Bram Kuijer M., Davarpanah M.A., Baker I., Kinsey B.L. (2021) “The Effect of Temperature on the Strain-Induced Austenite to Martensite Transformation in SS 316L During Uniaxial Tension”. In: Daehn G., Cao J., Kinsey B., Tekkaya E., Vivek A., Yoshida Y. (eds) Forming the Future. The Minerals, Metals & Materials Series. Springer, Cham. doi: 10.1007/978-3-030-75381-8_155

Mamros, E. M., Kinsey, B. L., & Korkolis, Y. P. (2020). “Analytical Investigation of Varying Deformation Paths Using Microtube Inflation and Axial Tension”. ASME 2020 15th International Manufacturing Science and Engineering Conference. Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability. doi: 10.1115/msec2020-8372.  

Mamros, E. M., Ha, J., Korkolis, Y. P., & Kinsey, B. L. (2020). “Experimental Investigation and Plasticity Modeling of SS316 L Microtubes Under Varying Deformation Paths”. Journal of Micro and Nano-Manufacturing, 8(4). doi: 10.1115/1.4049364.

Savage, D., Feng, Z. & Knezevic, M. (2021). “Identification of crystal plasticity model parameters by multi-objective optimization integrating microstructural evolution and mechanical data”. Computer Methods in Applied Mechanics and Engineering, 379, 113747. doi: 10.1016/j.cma.2021.113747

Sharma, R., Poulin, C.Knezevic, M., Miles, M. & Fullwood, D. (2021). “Micromechanical origins of remarkable elongation-to-fracture in AHSS TRIP steels via continuous bending under tension”. Materials Science and Engineering: A, 825, 141876. doi: 10.1016/j.msea.2021.141876

​Veasna, K., Feng, Z., Zhang, Q., & Knezevic, M. (2023). "Machine learning-based multi-objective optimization for efficient identification of crystal plasticity model parameters." Computer Methods in Applied Mechanics and Engineering.doi: 10.1016/j.cma.2022.115740.

Wang, J., Zhu, G., Wang, L., Vasilev, E., Park, J.-S., Sha, G., … Knezevic, M. (2021). “Origins of high ductility exhibited by an extruded magnesium alloy Mg-1.8Zn-0.2Ca: Experiments and crystal plasticity modeling”. Journal of Materials Science & Technology, 84, 27–42. doi: 10.1016/j.jmst.2020.12.047.  

Learn more about our research thrusts:

Research Thrust 1
Orthopedic implants

Research Thrust 2
Sheet metal implants

Research Thrust 3

Tissue regeneration scaffolds

Research Thrust 4
Porous conductive biosensors