Research Thrust 3: Scaffolds for Tissue Regeneration

Dr. Tsavalas with grad student Steve Frick
Dr. John Tsavalas with grad student Steve Frick. Image: Ali Asghar.

Team Leads:

Dr. John Tsavalas 
UNH Department of Chemistry
Dr. Harish Vashisth 
UNH Department of Chemical Engineering

NH BioMade is using 3-D printing to develop microscale porous scaffolds that mimic the structure of human tissue for use in surgical procedures and wound healing. In the human body, the extracellular matrix is composed of large molecules such as collagen, enzymes, and glycoproteins. It provides structural and biochemical support to surrounding cells and has highly variable structures. Fabricated scaffolds currently available are made of homogeneous materials and fail to replicate the complex structures of natural tissue. NH BioMade is developing tissue engineering techniques to guide the self-assembly of particles toward highly ordered structures with manufacturing control of pore dimensions and surface area and with mechanical and chemical properties that are predicted and controlled across multiple length scales.

Hypothesis:

Well-defined, prestructured microparticles will enable 3D printing of heterogeneous physical and porous macrostructure through simultaneous self-assembly and top-down biomaterial fabrication.

Intellectual Merit/Novelty:
  • Computation-integrated approach to material design, using rationally designed heterogeneous microscale building blocks 
  • Range of physical/mechanical properties to be successfully implemented via 3D printing
  • Family of tissue engineering platforms with unprecedented versatility to mimic heterogeneous structure of human tissues

Chen, R., & Berda, E. B. (2020). “100th Anniversary of Macromolecular Science Viewpoint: Re-examining Single-Chain Nanoparticles”. ACS Macro Letters, 9(12), 1836–1843. doi:10.1021/acsmacrolett.0c00774. 

Edwards, S., Hou, S., Brown, J., Boudreau, R., Lee, Y., Kim, Y. & Jeong, K. (2022). “Fast-Curing Injectable Microporous Hydrogel for In Situ Cell Encapsulation”. 2786-2794. ACS Applied Bio Materials. doi: 10.1021/acsabm.2c00214

Gorai, B., Rocha, B. & Vashisth, H. (2021). “Design of Functionalized Lobed Particles for Porous Self-Assemblies". JOM, doi: 10.1007/s11837-021-04715-w.

Li, L., Lin, Q., Tang, M., Tsai, E. H. R., & Ke, C. (2021). “An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic”. Angewandte Chemie International Edition. doi:10.1002/anie.202017019. 

Li, L., Lin, Q., Tang, M., Duncan, A. & Ke, C. (2019). “Advanced Polymer Designs for Direct‐Ink‐Write 3D Printing”. Chemistry – A European Journal, 25, 10768-10781. doi: 10.1002/chem.201900975.

Liang, R., Samanta, J., Shao, B., Zhang, M., Staples, R., Chen, A., Tang, M., Wu, Y., Aprahamian, I. & Ke, C. (2021). “A Heteromeric Carboxylic-acid-based Single Crystalline Crosslinked Organic Framework”. Angewandte Chemie International Edition. doi: 10.1002/anie.202109987. 

Lin, Q., Li, L., Tang, M., Uenuma, S., Samanta, J., Li, S., … Ke, C. (2021). “Kinetic trapping of 3D-printable cyclodextrin-based poly(pseudo)rotaxane networks”. Chem. doi:10.1016/j.chempr.2021.06.004.

Lin, Q., Tang, M., & Ke, C. (2019). “Thermo-responsive 3D-printed polyrotaxane monolith”. Polymer Chemistry. doi:10.1039/c9py01510h.  

Lin, Y.-C., Tripathi, A. K., & Tsavalas, J. G. (2021). “Tunable Multilobe Particle Geometry by Annealing-Assisted Emulsion Polymerization”. ACS Applied Polymer Materials. doi:10.1021/acsapm.1c01312

Nelson, C., Tuladhar, S. & Habib, M. (2021). “Designing an Interchangeable Multi-Material Nozzle System for 3D Bioprinting Process”. Proceedings of the ASME 2021 16th International Manufacturing Science and Engineering Conference MSEC2021  doi: 10.1115/msec2021-63471.

Nelson, C., Tuladhar, S., Launen, L., & Habib, A. (2021). “3D Bio-Printability of Hybrid Pre-Crosslinked Hydrogels”. International Journal of Molecular Sciences, 22(24), 13481. doi:10.3390/ijms222413481

Patenaude, B., Berda, E. & Pazicni, S. (2022). “Probing secondary coordination sphere interactions within porphyrin-cored polymer nanoparticles”. Polymer Chemistry, DOI: 10.1039/d1py01005k

Paul, S. & Vashisth, H. (2021). “Self-Assembly of Porous Structures From a Binary Mixture of Lobed Patchy Particles”. Frontiers in Physics. doi: 10.3389/fphy.2021.767623.

Paul, S., & Vashisth, H. (2020). “Self-assembly behavior of experimentally realizable lobed patchy particles”. Soft Matter, 16(35), 8101–8107. doi:10.1039/d0sm00954g. 

Paul, S., Nair, N. N., & Vashisth, H. (2019). “Phase space and collective variable based simulation methods for studies of rare events”. Molecular Simulation, 1–12. doi:10.1080/08927022.2019.1634268.  

Paul, S. & Vashisth, H. (2019). “Self-assembly of lobed particles into amorphous and crystalline porous structures”. Soft Matter. doi:10.1039/c9sm01878f. 

Rocha, B., Paul, S. & Vashisth, H. (2021). “Enhanced Porosity in Self-Assembled Morphologies Mediated by Charged Lobes on Patchy Particles”. The Journal of Physical Chemistry B, 125, 3208-3215. doi: 10.1021/acs.jpcb.0c11096.

Rocha, B. C.Paul, S., & Vashisth, H. (2020). “Role of Entropy in Colloidal Self-Assembly". Entropy, 22(8), 877. doi:10.3390/e22080877. 

Tripathi, A. & Tsavalas, J. (2021). “A surprisingly gentle approach to cavity containing spherocylindrical microparticles from ordinary polymer dispersions in flow”. Materials Horizons. doi: 10.1039/d1mh01108a.

Tuladhar, S., Nelson, C. & Habib, M. (2021). “Rheological Analysis of Low Viscosity Hydrogels for 3D Bio-Printing Processes”.  Proceedings of the ASME 2021 16th International Manufacturing Science and Engineering Conference MSEC2021. doi: 10.1115/msec2021-63658.

Tuladhar, S., Nelson, C. & Habib, M. (2021). “Rheological Study of Low-Viscous Hydrogels for 3d Bio-Printing Processes”.  Proceedings of the 2021 IISE Annual Virtual Conference

Zhang, M., Li, L., Lin, Q., Tang, M., Wu, Y., & Ke, C. (2019). “Hierarchical-Coassembly-Enabled 3D-Printing of Homogeneous and Heterogeneous Covalent Organic Frameworks.” Journal of the American Chemical Society. doi:10.1021/jacs.9b01561. 

LEARN MORE ABOUT OUR RESEARCH THRUSTS:

Research Thrust 1
Orthopedic implants 

Research Thrust 2
Sheet metal implants

Research Thrust 3
Tissue regeneration scaffolds

Research Thrust 4
Porous conductive biosensors