Research Thrust 4: Porous Conductive Biosensors

Dr. Mirica and students
Dr. Katherine Mirica and students. Image: Kathryn Lapierre.

Team Lead:

Dr. Katherine Mirica 
Dartmouth College Department of Chemistry

Biosensors are an important tool in medicine to assess stress and exertion, enable early diagnosis and treatment of disorders, and modify human behavior. The use of portable, bio-compatible, wearable, and implantable bioanalytical systems has the potential to improve monitoring of chronic diseases, enhance stress management, promote safety and security of medical information, and improve fundamental understanding of human physiology. Existing design strategies for creating porous electrodes with predictable structure-property relationships are extremely limited in scope. NH BioMade is using 3-D printing techniques to develop wearable and implantable sensors from metal-organic frameworks for better predictability, control, and self-healing capabilities.


Supramolecularly cross-linked polymers can serve as a 3D printing template to create hierarchically-organized functional nanomaterials, allowing cooperative assembly of conductive MOFs with the polymer network, which in turn enables precise bottom-up control over molecular and nanoscale porosity of electrode materials.

Intellectual Merit/Novelty:
  • Fundamental principles of controlling dynamic micro-to-macro scale assembly of highly modular 3D printable architectures
  • Fundamental discoveries for guiding the multifunctional and multi-component materials design of hierarchically-assembled materials capable of targeted electrochemical sensing in complex and dynamic biological systems


Aylin Aykanat, Christopher G. Jones, Evan Cline, Robert M. Stolz, Zheng Meng, Hosea M. Nelson, and Katherine A. Mirica (2021) “Conductive Stimuli-Responsive Coordination Network Linked with Bismuth for Chemiresistive Gas Sensing.” ACS Applied Materials & Interfaces, doi: 10.1021/acsami.1c14453

Aykanat, A., Meng, Z., Benedetto, G., & Mirica, K. A. (2020). “Molecular Engineering of Multifunctional Metallophthalocyanine-Containing Framework Materials”. Chemistry of Materials, 32(13), 5372–5409. doi:10.1021/acs.chemmater.9b05289.

Aykanat, A., Meng, Z., Stolz, R..M., Morrell, C..T. and Mirica, K..A. (2021), “Bimetallic Two-Dimensional Metal-Organic Frameworks for Chemiresistive Detection of Carbon Monoxide”. Angew. Chem. Int. Ed. doi: 10.1002/anie.202113665.  

Eagleton, A. M., Ko, M., Stolz, R. M., Vereshchuk, N., Meng, Z., Mendecki, L., Levenson, A. M., Huang, C., MacVeagh, K. C., Mahdavi-Shakib, A., Mahle, J. J., Peterson, G. W., Frederick, B. G., & Mirica, K. A. (2022). "Fabrication of Multifunctional Electronic Textiles Using Oxidative Restructuring of Copper into a Cu-Based Metal–Organic Framework". Journal of the American Chemical Society. 10.1021/jacs.2c05510

Ko, M., Mendecki, L., Eagleton, A. M., Durbin, C. G., Stolz, R. M., Meng, Z., & Mirica, K. A. (2020). “Employing Conductive Metal–Organic Frameworks for Voltammetric Detection of Neurochemicals”. Journal of the American Chemical Society, 142(27), 11717–11733. doi:10.1021/jacs.9b13402. 

McCorry, M. C., Reardon, K. F., Black, M., Williams, C., Babakhanova, G., Halpern, J. M., Sarkar, S., Swami, N. S., Mirica, K. A., Boermeester, S., & Underhill, A. (2022). "Sensor technologies for quality control in engineered tissue manufacturing". Biofabrication, 15(1), 012001. doi: 10.1088/1758-5090/ac94a1.

Meng, Z. & Mirica, K. “Covalent organic frameworks as multifunctional materials for chemical detection” Chemical Society Reviews doi: 10.1039/d1cs00600b

Meng, Z., Luo, J., Li, W., & Mirica, K. A. (2020). “Hierarchical Tuning of the Performance of Electrochemical Carbon Dioxide Reduction Using Conductive Two-Dimensional Metallophthalocyanine Based Metal–Organic Frameworks”. Journal of the American Chemical Society, 142(52), 21656–21669. doi:10.1021/jacs.0c07041. 

Meng, Z., Stolz, R. M., Mendecki, L., & Mirica, K. A. (2019). “Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials.” Chemical Reviews, 119(1), 478–598. doi:10.1021/acs.chemrev.8b00311. 

Meng, Z., Stolz, R. M., & Mirica, K. A. (2019). “Two-Dimensional Chemiresistive Covalent Organic Framework with High Intrinsic Conductivity”. Journal of the American Chemical Society. doi:10.1021/jacs.9b03441.  

Meng, Z., & Mirica, K. A. (2020). “Two-dimensional d-π conjugated metal-organic framework based on hexahydroxytrinaphthylene”. Nano Research, 14(2), 369–375. doi:10.1007/s12274-020-2874-x. 

Meng, Z., Jones, C., Farid, S., Khan, I., Nelson, H. & Mirica, K. (2021). “Unraveling the Electrical and Magnetic Properties of Layered Conductive Metal Organic Framework With Atomic Precision” . Angewandte Chemie International Edition doi: 10.1002/anie.202113569.

Samanta, J., Zhang, Y., Zhang, M., Chen, A., & Ke, C. (2022). "Single-Crystalline Hydrogen-Bonded Crosslinked Organic Frameworks and Their Dynamic Guest Sorption." Accounts of Materials Research. doi: 10.1021/accountsmr.2c00173.

Stolz, R., Mahdavi-Shakib, A., Frederick, B. & Mirica, K. (2020).  “Host–Guest Interactions and Redox Activity in Layered Conductive Metal–Organic Frameworks”. Chemistry of Materials, 32(18), pp.7639–7652. doi:10.1021/acs.chemmater.0c01007. 


Research Thrust 1
Orthopedic implants

Research Thrust 2
Sheet metal implants

Research Thrust 3
Tissue regeneration scaffolds

Research Thrust 4
Porous conductive biosensors